- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Bounaim, Doha (2)
-
Li, Gang (2)
-
Mouafik, Sara (2)
-
Aslam, Laeeq (1)
-
Barbre, Zachary (1)
-
Davis, John (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper presents a practical framework that integrates wind speed forecasting with proton exchange membrane (PEM) electrolyzer design to optimize hydrogen production. Due to wind speed fluctuations, excess electrical energy is sometimes produced and left unused. A wind-to-hydrogen system addresses this challenge by converting surplus energy into storable hydrogen using a PEM electrolyzer. The proposed approach employs a multivariate supervisory control and data acquisition (SCADA) dataset and applies a convolutional neural network with bi-directional long short-term memory (CNN-Bi-LSTM) for multivariate wind speed temporal forecasting, enabling more efficient PEM operations. Compared to standard deep learning models, the CNN-Bi-LSTM architecture reduces the root mean square error by 52.5% and the mean absolute error by 56%, thereby enhancing hydrogen production forecasting. Simulation results show that a membrane thickness of 0.0252 mm and an operating temperature of 70% achieve the highest overall PEM efficiency of 63.611%. This study demonstrates the integration of deep learning-based forecasting with electrochemical modeling and SCADA datasets as a novel approach for wind-to-hydrogen production systems.more » « lessFree, publicly-accessible full text available January 1, 2027
-
Mouafik, Sara; Bounaim, Doha; Barbre, Zachary; Aslam, Laeeq; Davis, John; Li, Gang (, Engineering applications of artificial intelligence)This study proposes an intelligent techno-economic assessment framework for wind energy end users, using a novel dual-input convolutional bidirectional long short-term memory (Dual-ConvBiLSTM) architecture to predict dynamic levelized cost of energy (LCOE). The proposed architecture separates weight matrices for wind supervisory control and data acquisition (SCADA) data and financial data. This allows the model to integrate both data streams at every time step through a custom dual-input cell. This approach is compared with five baseline architectures: Recurrent Neural Network (RNN), LSTM, BiLSTM, ConvLSTM, and ConvBiLSTM, which process data through separate parallel branches and concatenate outputs before final prediction. The Dual-ConvBiLSTM achieves an LCOE estimate of $4.0391 cents/kWh, closest to the actual value of $4.0450 cents/kWh, with a root mean squared error reduction of 51.8% compared to RNN, 47.0% to LSTM, 40.0% to BiLSTM, 36.7% to ConvLSTM, and 34.4% to ConvBiLSTM, demonstrating superior capability in capturing complex interactions between SCADA data and financial parameters. This intelligent framework potentially enhances economic assessment and enables end users to accelerate renewable energy deployment through more reliable financial prediction.more » « lessFree, publicly-accessible full text available November 11, 2026
An official website of the United States government
